Distance Between Two Points

The \qquad states a relationship among the three sides of a \qquad triangle.

The \qquad (c) is the side opposite the right angle and will always be the \qquad side of the triangle. The other two sides (a and b) are \qquad .

Diagram:	Formula:

The \qquad is a direct application of the \qquad .

The \qquad between two points is the \qquad of the line segment connecting the two points.

Diagram:	Formula:

Example:

Use the distance formula to find the length of each side of the triangle.

$A B=$
$B C=$
$A C=$
$\triangle A B C$ is a \qquad triangle!

In this unit, we will be classifying geometric \qquad .
The distance formula is used to determine if two sides (or diagonals) of a polygon are \qquad -.

For example:

- opposite sides of a \qquad are congruent
- all four sides of a \qquad are congruent
- diagonals of a \qquad are congruent

