\qquad

Yours truly, Mrs. Fuston, survived math using flashcards. I would write the question on the front of the flashcard and the work/answer on the back. As the unit progressed, l'd add new cards to the set. Every few days before a quiz or test, I would shuffle the cards to review. If I had to peek at the back of the card AT ALL to finish it successfully, I didn't know it well enough for the test. I'd put that card on the bottom of the pile. Questions I could answer correctly without peeking would be set off to the side. I would practice until I got through all of the cards without needing hints. Again, I would do that several times before the test. It worked!! ©

Here are 10 questions that represent the content of this unit ...

1. Graph $f(x)=(x+1)^{2}(x+4)(x-1)$.
a) Degree: \qquad \# of turning points: \qquad leading coefficient: \qquad
b) Describe the end behavior.
c) Name each zero and describe it's multiplicity.
2. Graph $f(x)=-(x-2)^{2}(x+2)$.
a) Degree: \qquad \# of turning points: \qquad leading coefficient: \qquad
b) Describe the end behavior.
c) Name each zero and describe it's multiplicity.
3. Sketch a polynomial function of degree 4, with a negative leading coefficient, that has two distinct real zeros and two complex zeros and a positive y-intercept.
4. Factor $f(x)=2 x^{3}+9 x^{2}+10 x+3$ given that $f(-1)=0$.
5. Find ALL the zeros of $f(x)=2 x^{4}-x^{3}-28 x^{2}+9 x+90$ given that $f(-2)=0$ and $f(5 / 2)=0$.
6. Find ALL the zeros of $f(x)=x^{3}+9 x^{2}+21 x+18$ given that $(x+6)$.
7. Find ALL the zeros of $f(x)=x^{4}-8 x^{3}+9 x^{2}+56 x-112$.
8. Find ALL the zeros of $f(x)=2 x^{3}-x^{2}+2 x-1$.
9. Given: $f(2)=16, f(1)=0, f(0)=-36, f(3)=0, f(-1)=-32$, and $f(-2)=0$
a) Name the y-intercept.
b) Name the factors.
c) Name the zeros.
d) Name one ordered pair that is not on an axis.
10. Write a polynomial function of least degree, a leading coefficient of 1 , and the zeros $-1, \sqrt{2},-\sqrt{2}$.
