Guided Notes – Trigonometric Ratios and SOHCAHTOA

Name_____

Triangle Sides (based on θ):

1. Label the triangle below with the correct sides labeled as either hypotenuse, opposite, or adjacent in relation to where θ is located.

2. Complete the following based off of the corresponding triangles below.

Which side is the hypotenuse? _____

Which leg is opposite θ? _____

Which leg is adjacent to θ?_____

What are the Trigonometric Ratios?

Sine	Sin θ =
Cosine	Cos θ =
Tangent	Tan θ =

How do we use these ratios?

Find the missing side (use Pythagorean Theorem) and evaluate each for sin θ , cos θ , and tan θ .

How would you solve the following problem? Suppose $\angle J$ and $\angle K$ are complementary angles in a right triangle. The value of tan J = $\frac{12}{5}$. What is the value of sin J?

- 1. Draw and label a triangle for the problem.
- 2. Use the given trig ratio to label the lengths of two sides. Then use the Pythagorean Theorem to find the third side.
- 3. Using the measures of the sides of the triangle, find sin J.

Try this one...

Suppose $\angle A$ and $\angle B$ are complementary angles in a right triangle. The value of sin A = $\frac{7}{14}$. What is the value of cos A?