Identity and Inverse Matrices

square
$n \times n$ identity matrix - the matrix that has 1's on the main diagonal and 0's elsewhere.

$$
I_{2 \times 2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3 \times 3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

* If A is any $n \times n$ matrix and I is the $n \times n$ identity matrix, then $I A=A$ and $A I=A$.
* If B is any $m \times n$ matrix, then

$$
I_{m \times m} B=B \text { and } B I_{n \times n}=B \text {. }
$$

The Inverse of a 2×2 Matrix:

$$
\text { If } A=\left[\begin{array}{ll}
a & \\
c & b \\
c & d
\end{array}\right]
$$ $\underset{\substack{\text { of } \\ \text { determinant }}}{ } \uparrow$

Ex 1. Find each inverse:

$$
\begin{array}{ll}
\text { a. } A=\left[\begin{array}{ll}
3 & 1 \\
4 & 2
\end{array}\right] & \text { b. } A=\left[\begin{array}{cc}
6 & 1 \\
-8 & -2
\end{array}\right] \\
|A|=6-4=2 & |A|=-12-(-8)=-4 \\
A^{-1}=\frac{1}{2}\left[\begin{array}{cc}
2 & -1 \\
-4 & 3
\end{array}\right] & A^{-1}=\frac{1}{-4}\left[\begin{array}{cc}
-2 & -1 \\
8 & 6
\end{array}\right] \\
A^{-1}=\left[\begin{array}{cc}
1 & -\frac{1}{2} \\
-2 & \frac{3}{2}
\end{array}\right] & A^{-1}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{4} \\
-2 & -\frac{3}{2}
\end{array}\right]
\end{array}
$$

