
Intro to Vectors and Vector Opertaions Notes

a Vector in Standard Position ...
has its initial point (tail) at the origin.
(same magnitude and direction)

Component Form of a Vector ...

• in standard form: $\vec{v} = \langle x, y \rangle$ $\vec{v} = \langle x_2 - x_1, y_2 - y_1 \rangle$ (x_1, y_1) (x_1, y_2) terminal point – initial point

4

6

Example 1 ... initial point: (-3, -4)
terminal point: (5, -1)

a) Find component form. $\vec{v} = \langle 5 - (-3), -1 - (-4) \rangle$ $\vec{v} = \langle 8, 3 \rangle$ b) Sketch in standard position.

Example 2 ... initial point: (3 5) terminal point: (-1, -1)

a) Find component form. $\vec{v} = \langle -1 - 3, -1 - 5 \rangle$ $\vec{v} = \langle -4, -6 \rangle$ b) Sketch in standard position.

• Given $\vec{u} = \langle 2, -9 \rangle$ and $\vec{v} = \langle -6, 8 \rangle$. • Find: a) $\vec{u} + \vec{v} = \langle 2, -9 \rangle + \langle -6, 8 \rangle = \langle 2 + (-6), -9 + 8 \rangle = \langle -4, -1 \rangle$ b) $\vec{v} - \vec{u} = \langle -6, 8 \rangle - \langle 2, -9 \rangle = \langle -6 - 2, 8 - (-9) \rangle = \langle -8, 17 \rangle$ c) $-2\vec{u} - 3\vec{v} = -2\langle 2, -9 \rangle - 3\langle -6, 8 \rangle$ $= \langle -4, 18 \rangle + \langle 18, -24 \rangle = \langle 14, -6 \rangle$ d) $\vec{u} + \frac{1}{2}\vec{v} = \langle 2, -9 \rangle + \frac{1}{2}\langle -6, 8 \rangle = \langle 2, -9 \rangle + \langle -3, 4 \rangle = \langle -1, -5 \rangle$

Vector Operations

8