#1-3. Use these matrices:

$$A = \begin{bmatrix} -1 & 2 \\ 4 & 3 \\ -7 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 2 \\ 4 & 3 \\ -7 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} -5 & -2 & -1 & 0 \\ 3 & -3 & 2 & 4 \end{bmatrix}$$

- What are the dimensions of: (a) matrix A? _____ (b) matrix B? _____ 1.
- 2. In matrix B, what element is in the first row, second column?
- 3. In matrix A, identify the element $a_{2,1}$

#4-5. Complete each of the following to make the statement true.

- 4. To be able to add or subtract matrices, the ______ of the matrices must be the ______ .
- 5. To be able to multiply matrices, the number of ______ in the first matrix must be the same as the number of _____ in the second matrix.

#6-8. Provide the missing dimensions so that each of the following will be a true statement.

6.
$$A_{5x3} \cdot B_{3x2} = P_{\underline{}}$$

$$7. A_{2x2} \cdot B_{\underline{}} = P_{2x6}$$

7.
$$A_{2x2} \cdot B_{\underline{}} = P_{2x6}$$
 8. $A_{\underline{}} \cdot B_{8x3} = P_{1x3}$

#9-10. Solve the following matrix equations for x, y, and z.

9.
$$\begin{bmatrix} 3x+1 & 5 \\ -4z & -3 \end{bmatrix} = \begin{bmatrix} x-15 & 5 \\ 18 & \frac{1}{4}y+2 \end{bmatrix}$$

10.
$$2\begin{bmatrix} 4+3y & 1 \\ -5 & x \end{bmatrix} + \begin{bmatrix} 1 & 6-5z \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} y-3 & 3 \\ -8 & -2 \end{bmatrix}$$

#11-19. Perform the indicated operations. If not possible, give an explanation. $\begin{bmatrix}
8 & 4 \\
3 & 0
\end{bmatrix} - 3 \begin{bmatrix}
2 & 4 \\
-1 & -6
\end{bmatrix} = \begin{bmatrix}
12. \begin{bmatrix}
2 & 3 \\
-1 & 4
\end{bmatrix} \begin{bmatrix}
5 & 1 \\
2 & -6
\end{bmatrix} = \begin{bmatrix}
13. \begin{vmatrix}
2 & -2 \\
5 & 3
\end{vmatrix} = \begin{bmatrix}
14. \begin{vmatrix}
2 & -2 \\
5 & 3
\end{vmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
5 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
3 & 3 & 3 & 3 \\
3 &$

<u> </u>				
11.	[8	4	\int_{2}^{2}	4]
	3	0	$\begin{bmatrix} -3 \\ -1 \end{bmatrix}$	-6]=

12.
$$\begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 5 & 1 \\ 2 & -6 \end{bmatrix} =$$

13.
$$\begin{vmatrix} 2 & -2 \\ 5 & 3 \end{vmatrix} =$$

$$\begin{bmatrix} 1 & 20 & 8 \\ 30 & 6 & 9 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 2 & 4 & 8 \\ -8 & -6 & 12 \end{bmatrix} = \begin{bmatrix} 15. & I_{5x5} = 1 \end{bmatrix}$$

15.
$$I_{5x5} =$$

16.
$$\begin{bmatrix} -2 & 1 \\ 3 & -2 \\ 4 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 & 3 \\ 2 & 1 & -2 \end{bmatrix}$$

17.
$$B = \begin{bmatrix} 2 & -2 \\ 5 & 3 \end{bmatrix}$$
, find B^{-1}

18.
$$A = \begin{bmatrix} -2 & 3 & 1 \\ -1 & 0 & 6 \\ 2 & 4 & -1 \end{bmatrix}$$
, find

19.
$$A = \begin{bmatrix} 7 & -2 \\ -9 & 3 \end{bmatrix}$$
, find A^{-1}