Multiplying Matrices

1. State whether $A B$ is defined. If so, give the dimensions.
a. A: 2×4 B: 4×3
$A_{y_{\text {yes }}} \cdot B_{4 \times 3}$
$A \cdot B$ is 2×3
b. A: 1×4 B: 1×4

$$
A_{1 \times 4} \cdot \underbrace{B_{1 \times 4}}_{n_{0}} \quad \begin{gathered}
A \cdot B \text { does } \\
\text { not exist }
\end{gathered}
$$

2. Find AB.

$$
\mathrm{A}=\left[\begin{array}{cc}
-1 & 5 \\
5 & 2 \\
0 & -4
\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{cc}
4 & -3 \\
6 & 8
\end{array}\right]
$$

$$
\begin{aligned}
A B & =\left[\begin{array}{cc}
-1 & 5 \\
5 & 2 \\
0 & -4
\end{array}\right] \cdot\left[\begin{array}{cc}
4 & -3 \\
6 & 8
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{-4+30}{20+12} & \frac{3+40}{0+-24} \\
\frac{-15+16}{0+-32}
\end{array}\right]=\left[\begin{array}{cc}
26 & 43 \\
32 & 1 \\
-24 & -32
\end{array}\right]
\end{aligned}
$$

3. Find $A B$ and $B A$.

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
4 & 1 \\
0 & -2
\end{array}\right] \quad B=\left[\begin{array}{cc}
-4 & -3 \\
1 & 2
\end{array}\right] \\
& A B=\left[\begin{array}{cc}
4 & 1 \\
0 & -2
\end{array}\right] \cdot\left[\begin{array}{cc}
-4 & -3 \\
1 & 2
\end{array}\right]=\left[\frac{-16+1}{\frac{0+2}{}} \frac{\frac{-12+2}{0+-4}}{}\right]=\left[\begin{array}{cc}
-15 & -10 \\
-2 & -4
\end{array}\right] \\
& B A=\left[\begin{array}{cc}
-4 & -3 \\
1 & 2
\end{array}\right] \cdot\left[\begin{array}{cc}
4 & 1 \\
0 & -2
\end{array}\right]=\left[\frac{-16+0}{4+0} \frac{-4+6}{1+-4}\right]=\left[\begin{array}{cc}
-16 & 2 \\
4 & -3
\end{array}\right]
\end{aligned}
$$

* Matrix multiplication is NOT commutative? ?

Properties of Matrix Operations

Associative Property

$$
(A+B)+C=A+(B+C)
$$ of Addition

Commutative Property $\quad \mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$ of Addition

Distributive Property $\mathbf{c}(\mathbf{A}+\mathbf{B})=\mathbf{c} \mathbf{A}+\mathbf{c B}$ with a scalar

Properties of Matrix Multiplication

Associative Property

$$
A(B C)=(A B) C
$$ of Matrix Multiplication

Left Distributive
Right Distributive

Associative Property of scalar multiplication

$$
\begin{aligned}
& A(B+C)=A B+A C \\
& (A+B) C=A C+B C
\end{aligned}
$$

$$
c(A B)=(c A) B=A(c B)
$$

4. Find $B(A+C)$ and $B A+B C$.

$$
\begin{gathered}
A=\left[\begin{array}{cc}
2 & -2 \\
1 & 4
\end{array}\right] \quad B=\left[\begin{array}{cc}
0 & 1 \\
-3 & -2
\end{array}\right] \quad C=\left[\begin{array}{cc}
0 & 3 \\
2 & -1
\end{array}\right] \\
B(A+C)=\left[\begin{array}{cc}
0 & 1 \\
-3 & -2
\end{array}\right]\left(\left[\begin{array}{cc}
2 & -2 \\
1 & 4
\end{array}\right]+\left[\begin{array}{cc}
0 & 3 \\
2 & -1
\end{array}\right]\right) \\
=\left[\begin{array}{cc}
0 & 1 \\
-3 & -2
\end{array}\right] \cdot\left[\begin{array}{ll}
2 & 1 \\
3 & 3
\end{array}\right]=\left[\begin{array}{cc}
3 & 3 \\
-12 & -9
\end{array}\right] \\
B A+B C=\left[\begin{array}{cc}
0 & 1 \\
-3 & -2
\end{array}\right] \cdot\left[\begin{array}{cc}
2 & -2 \\
1 & 4
\end{array}\right]+\left[\begin{array}{cc}
0 & 1 \\
-3 & -2
\end{array}\right] \cdot\left[\begin{array}{cc}
0 & 3 \\
2 & -1
\end{array}\right] \\
{\left[\begin{array}{cc}
1 & 4 \\
-8 & -2
\end{array}\right]+\left[\begin{array}{cc}
2 & -1 \\
-4 & -7
\end{array}\right]=\left[\begin{array}{cc}
3 & 3 \\
-12 & -9
\end{array}\right]}
\end{gathered}
$$

