Parallel and Perpendicular Lines

The slope of a line is a number that measures how steep the line is.

- A horizontal line (a line of the form $y=c$) has a slope of zero.
- A vertical line (a line of the form $x=c$) has an undefined slope.
- Lines that are not horizontal or vertical may have a positive slope or a negative slope.

Draw the following:
$\xrightarrow{\text { A line with a positive slope. }}$

The slope of a line is represented by the letter \boldsymbol{m}. No one knows for certain why \boldsymbol{m} was chosen, but one theory is that it comes from "monter", which means "to climb" in French.

You have already learned the slope formula:
Given two points on a line, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$,
the slope of the line is calculated by the formula:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Lines and their slopes are related.

- Two lines are parallel if they are in the same plane but never intersect.
- Two non-vertical lines are parallel if they have the same slope.
- Two lines are perpendicular if they intersect at a 90° angle.
- Two non-vertical lines are perpendicular if the product of their slopes is -1 .
(In other words, two lines are perpendicular if the slopes are opposite reciprocals of each other.)

Find the slope of each line using the slope formula. Show clear work!
Determine whether each pair of lines is parallel, perpendicular, or neither.

$$
A(1,2) \quad B(3,-4) \quad C(9,-2) \quad D(10,-5) \quad E(9,-8) \quad F(-3,-12)
$$

1. $\overleftrightarrow{A B}$ and $\overleftrightarrow{D E}$
2. $\overrightarrow{C D}$ and $\overleftrightarrow{E F}$
3. $\overleftrightarrow{B C}$ and $\overleftrightarrow{E F}$

Slope-intercept form of a line is

$$
y=m x+b \text {, }
$$

where \boldsymbol{m} is the slope and
\boldsymbol{b} is the y -intercept of the line.

Point-slope form of a line is

$$
y-y_{1}=m\left(x-x_{1}\right),
$$

where \boldsymbol{m} is the slope and $\left(x_{1}, y_{1}\right)$ is a point on the line.

Lines Parallel to Given Line

The line parallel to a given line through a given point will have the same slope as the given line, but a different y-intercept. Use the slope of the given line, the given point, and the point-slope formula to write the equation.

Lines Perpendicular to Given Line

The line perpendicular to a given line through a given point will have a slope that is the opposite reciprocal of the given line. Use this information, the given point and the point-slope formula to write the equation.

Examples

4. Write an equation of the line that passes through $(-3,5)$ and is parallel to $y=2 x-4$.
step $1 \rightarrow$ substitute $m=2$, and $\left(x_{1}, x_{2}\right)=(-3,5)$ into the point-slope formula:

$$
y-Z_{Z}=Z_{C}\left(x-Z_{1}\right)
$$

step $2 \rightarrow$ distribute and put into slope-intercept form:

$$
y=
$$

5. Consider the line $4 x-2 y=-5$.

Part a: What is the slope of the line? (Hint: Put the line into slope-intercept form.)

Part b: What is the slope of a line parallel to the line in part a?

Part c : What is the slope of a line perpendicular to the line in part a?
6. Consider the line $2 x+3 y=12$.

Part a: What is the slope of the line?
Part b: What is the slope of a line perpendicular to the line in part a?
Part b: Write an equation of the line perpendicular to $2 x+3 y=12$ that passes through $(-4,6)$.

