Polynomial Functions and Graphing Technology: TI-83 or TI-84

To Graph a Function:

[$Y=$] enter equation, using $[X, T, \theta, n]$ for the variable " x "
To View Graph:
[GRAPH]
[ZOOM] 6: Standard to set a standard viewing window with domain $-10 \leq x \leq 10$ and range $-10 \leq y \leq 10$
[WINDOW] to set a different window to see all zeros and turning points

To Get Real Zeros/x-Intercepts:

(You must do this one at a time for each real zero!)

$\left[2^{\text {nd }}\right][C A L C] ~ 2: ~ z e r o ~ . . . ~$	LeftBound? arrow to an x-value to the left of a zero [ENTER]
	RightBound? arrow to an x-value to the right of the same zero
	ENTER]

To Get a Local Maximum:

(You must do this one at a time for each maximum turning point!)

[$\left.2^{\text {nd }}\right]$ [CALC] 4: Maximum ...
 LeftBound? arrow to an x-value to the left of a maximum [ENTER] RightBound? arrow to an x-value to the right of the same maximum [ENTER] Guess? [ENTER] ... the maximum is at the bottom of the screen

To Get a Local Minimum:

(You must do this one at a time for each minimum turning point!)

Example: $y=x^{3}+2 x^{2}-5 x+1$

Example:	$X \min =-5$	$Y \min =-5$
	$X \max =5$	$Y \max =15$
	$X s c l=1$	$Y s c l=1$

Zeros: $x \approx-3.51,0.22,1.29$

Local Maximum: $(-2.12,11.06)$

Local Minimum: (0.79, -1.21)

Try another example:
$y=2 x^{4}-5 x^{3}+4 x+3$
Zeros: $x=-1.16,3.21$ (and two complex zeros)
Local Max: $(0,-6)$
Local Min: (2.31, -32.03) and (-0.43, -6.27)

Polynomial Functions and Graphing Technology: TI-Nspire

To Graph a Function:

open a new document and select 2: Add Graph
f1(x)= enter equation

To View Graph:

[ENTER] graph magically appears \odot
[MENU] 4: Window/Zoom ... 5: Standard to set a standard viewing window
[MENU] 4: Window/Zoom ... 1: Window Settings to set a different window to see all zeros and turning points

To Get Real Zeros/x-Intercepts:

(You must do this one at a time for each real zero!)

[MENU] 6: Analyze Graph ... 1: zero \quad| Lower Bound? click on an x-value to the left of a zero |
| :--- |
| |
| |
| |
| Upper Bound? click on an x-value to the right of the same zero |
| the zears |

To Get a Local Maximum:

(You must do this one at a time for each maximum turning point!)
[MENU] 6: Analyze Graph ... 3: Maximum ... Lower Bound? click on an x-value to the left of a maximum
Upper Bound? click on an x-value to the right of the same maximum the maximum appears

To Get a Local Minimum:

(You must do this one at a time for each minimum turning point!)
[MENU] 6: Analyze Graph ... 2: Minimum ... Lower Bound? click on an x-value to the left of a minimum Upper Bound? click on an x-value to the right of the same minimum the minimum appears

Example: $\mathrm{f} 1(\mathrm{x})=\mathrm{x}^{3}+2 \mathrm{x}^{2}-5 \mathrm{x}+1$

Zeros: $x \approx-3.51,0.22,1.29$

Local Maximum: $(-2.12,11.06)$

Try another example:

$y=2 x^{4}-5 x^{3}+4 x+3$

Zeros: $x=-1.16,3.21$ (and two complex zeros)
Local Max: (0, -6)
Local Min: (2.31, -32.03) and (-0.43, -6.27)

