Polynomial Functions and Graphing Technology: TI-83 or TI-84

To Graph a Function:			
[Y=] enter equation, using [X, T, Θ, n] for the variable "x"	Example: $y = x^3 + 2x^2 - 5x + 1$		
To View Graph:			
[GRAPH]	Example:	Xmin=-5	Ymin=-5
[ZOOM] 6: Standard to set a standard viewing window with domain -10 \leq x \leq 10 and range -10 \leq y \leq 10	Xmax=5 Ymax=15		Ymax=15
[WINDOW] to set a different window to see all zeros and turning points		Xscl=1	Yscl=1
To Get Real Zeros/x-Intercepts:			
[2 nd] [CALC] 2: zero LeftBound? arrow to an x-value to the left of a zero [ENTER] RightBound? arrow to an x-value to the right of the same zero [ENTER] Guess? [ENTER] the zero is at the bottom of the screen	Zeros: x ≈ -3	.51, 0.22, 1.29	
<u>To Get a Local Maximum</u> :			
(You must do this one at a time for each maximum turning point!)	Local Maximu	ım: (-2.12, 11.0	6)
[2 nd] [CALC] 4: Maximum LeftBound? arrow to an x-value to the left of a maximum [ENTER] RightBound? arrow to an x-value to the right of the same maximum [ENTER] Guess? [ENTER] the maximum is at the bottom of the screen			
<u>To Get a Local Minimum</u> :			
(You must do this one at a time for each minimum turning point!)	Local Minimu	m: (0.79, -1.21)
 [2nd] [CALC] 3: Minimum LeftBound? arrow to an x-value to the left of a minimum [ENTER] RightBound? arrow to an x-value to the right of the same minimum [ENTER] Guess? [ENTER] the minimum is at the bottom of the screen 			

Try another example:

 $y = 2x^4 - 5x^3 + 4x + 3$

Zeros: x = -1.16, 3.21 (and two complex zeros) Local Max: (0, -6) Local Min: (2.31, -32.03) and (-0.43, -6.27)

Polynomial Functions and Graphing Technology: TI-Nspire

To Graph a Function: open a new document and select 2: Ad f1(x)= enter equation	d Graph	Example: $f1(x) = x^3 + 2x^2 - 5x + 1$		
<u>To View Graph</u> : [ENTER] graph magically appears ☺ [MENU] 4: Window/Zoom 5: Standar [MENU] 4: Window/Zoom 1: Window	d to set a standard viewing window / Settings to set a different window to see all zeros and turning points	Example: Xmax=5 Xscl=1	Xmin=-5 Ymax=15 Yscl=1	Ymin=-5
To Get Real Zeros/x-Intercepts: (You must do this one at a time for each [MENU] 6: Analyze Graph 1: zero	n real zero!) Lower Bound? click on an x-value to the left of a zero Upper Bound? click on an x-value to the right of the same zero the zero appears	Zeros: x ≈ -3.51, 0.22, 1.29		
To Get a Local Maximum: (You must do this one at a time for each [MENU] 6: Analyze Graph 3: Maximu	n maximum turning point!) m Lower Bound? click on an x-value to the left of a maximum Upper Bound? click on an x-value to the right of the same maximum the maximum appears	Local Maximun	n: (-2.12, 11.06)	
To Get a Local Minimum: (You must do this one at a time for each [MENU] 6: Analyze Graph 2: Minimur	n minimum turning point!) n Lower Bound? click on an x-value to the left of a minimum Upper Bound? click on an x-value to the right of the same minimum the minimum appears	Local Minimum	: (0.79, -1.21)	

Try another example:

 $y = 2x^4 - 5x^3 + 4x + 3$

Zeros: x = -1.16, 3.21 (and two complex zeros) Local Max: (0, -6) Local Min: (2.31, -32.03) and (-0.43, -6.27)