Polynomial Functions

Review WS 1

Name _____

1. Let P(x) = a polynomial where P(1) = 0, P(2) = 0, P(-3) = 0. Factor P(x) completely.

- 2. Find the zeros of $f(x) = x^3 + x^2 4x 4$. Show work.
- 3. If P(x) = polynomial that is divided by x 2. Then remainder is the same as (select one answer)
 - a) P(2)
- b) P(-2)
- c) 2
- d) -2

4. Find k so that x-3 is a factor of $2x^3-7x^2+4x+k$

5. The possible rational roots of $f(x) = 3x^4 - 5x^3 + 2x - 8$ are

6. One factor of $x^3 - 4x^2 + x + 6$ is x - 3. Find the other factors.

7. Find a polynomial function of 4^{th} degree, in standard form, with zeros of 3i and 1-2i.

8. Given P(x) such that P(-5) = 41, P(0) = 3, P(4) = 0, P(1) = 5 find:

- a) a factor of P(x)
- b) remainder when P(x) is divided by x+5
- c) zero
- d) y-intercept

9. Graph: $f(x) = (x-1)^2(x-3)(x+2)$

10. Find all the zeros: $f(x) = x^4 - 4x^3 + x^2 + 16x - 20$

11. Find the value of f(5) for $f(x) = x^3 - 3x^2 + 3x - 6$ using synthetic division.

12. Given x+2 is a factor of $f(x) = 2x^3 - x^2 - 7x + 6$, find the zeros.

13. Solve by factoring: a) $3x^3 + 81 = 0$ b) $5x^4 - 45 = 0$ c) $x^4 - 9x^2 + 20 = 0$

Answers:

1.
$$P(x) = (x-1)(x-2)(x+3)$$

2.
$$x = -2, -1, 2$$

4. Hint: set up and work synthetic substitution as far as you can and work backwards ... k = -3

5. It just asked for the **possibles**! $\pm \left(1, 2, 4, 8, \frac{1}{3}, \frac{2}{3}, \frac{4}{3}, \frac{8}{3}\right)$

6. factors: (x-3)(x-2)(x+1)

7. $f(x) = x^4 - 2x^3 + 14x^2 - 18x + 45$

8. a) (x-4) b) 41 c) x = 4 d) (0, 3)

9. see graph to the right

10. $x = \pm 2, 2 \pm i$

11. f(5) = 59

12. x = -2, 1, 3/2

13. a) -3, $\frac{3 \pm 3i\sqrt{3}}{2}$ b) $\pm \sqrt{3}, \pm i\sqrt{3}$ c) $\pm 2, \pm \sqrt{5}$

