\qquad

Review WS 1

1. Let $P(x)=$ a polynomial where $P(1)=0, P(2)=0, P(-3)=0$. Factor $P(x)$ completely.
2. Find the zeros of $f(x)=x^{3}+x^{2}-4 x-4$. Show work.
3. If $P(x)=$ polynomial that is divided by $x-2$. Then remainder is the same as (select one answer)
a) $P(2)$
b) $P(-2)$
c) 2
d) -2
4. Find k so that $x-3$ is a factor of $2 x^{3}-7 x^{2}+4 x+k$
5. The possible rational roots of $f(x)=3 x^{4}-5 x^{3}+2 x-8$ are
6. One factor of $x^{3}-4 x^{2}+x+6$ is $x-3$. Find the other factors.
7. Find a polynomial function of $4^{\text {th }}$ degree, in standard form, with zeros of $3 i$ and $1-2 i$.
8. Given $P(x)$ such that $P(-5)=41, P(0)=3, P(4)=0, P(1)=5$ find:
a) a factor of $P(x)$
b) remainder when $P(x)$ is divided by $x+5$
c) zero
d) y-intercept
9. Graph: $f(x)=(x-1)^{2}(x-3)(x+2)$
10. Find all the zeros: $f(x)=x^{4}-4 x^{3}+x^{2}+16 x-20$
11. Find the value of $f(5)$ for $f(x)=x^{3}-3 x^{2}+3 x-6$ using synthetic division.
12. Given $x+2$ is a factor of $f(x)=2 x^{3}-x^{2}-7 x+6$, find the zeros.
13. Solve by factoring:
a) $3 x^{3}+81=0$
b) $5 x^{4}-45=0$
c) $x^{4}-9 x^{2}+20=0$

Answers:

1. $P(x)=(x-1)(x-2)(x+3)$
2. $x=-2,-1,2$
3. a)
4. Hint: set up and work synthetic substitution as far as you can and work backwards ... $\mathrm{k}=-3$
5. It just asked for the possibles! $\pm\left(1,2,4,8, \frac{1}{3}, \frac{2}{3}, \frac{4}{3}, \frac{8}{3}\right)$
6. factors: $(\mathrm{x}-3)(\mathrm{x}-2)(\mathrm{x}+1)$
7. $f(x)=x^{4}-2 x^{3}+14 x^{2}-18 x+45$
8. a) $(x-4)$
b) $41 \quad$ c) $x=4$
d) $(0,3)$
9. see graph to the right
10. $x= \pm 2,2 \pm i$
11. $f(5)=59$
12. $x=-2,1,3 / 2$
13. a) $-3, \frac{3 \pm 3 i \sqrt{3}}{2}$
b) $\pm \sqrt{3}, \pm i \sqrt{3}$
c) $\pm 2, \pm \sqrt{5}$

