- 1. Write the vector with initial point (-4, 3) and terminal point (-1, -7) in ...
 - a. component form
 - b. sum of unit vectors form
- 2. In what quadrant does the vector above lie when it is in standard position?
- 3. Given $\overrightarrow{v}=\left<3,-5\right>$ and $\overrightarrow{w}=\left<-2,6\right>$, find the following:
 - a. $\overrightarrow{v} + \overrightarrow{w}$
 - b. $\overrightarrow{w} \overrightarrow{v}$
 - c. $-2\vec{v} + \frac{1}{2}\vec{w}$
- 4. Given $\vec{v} = \langle -3, \sqrt{5} \rangle$, find the following, to the nearest tenth: (3 points each)
 - a. the magnitude of \overrightarrow{v} : $\|\overrightarrow{v}\|$ = ______
 - b. the direction of \vec{v} : $\theta =$
- 5. Given: $\left\| \vec{a} \right\| = 6$, $\left\| \vec{b} \right\| = 8$, and the angle between the vectors $\, \theta = 57^{\circ} \,$
 - a. Draw and label a parallelogram, including the given information and the resultant vector.
 - b. Find the magnitude of the resultant vector to the nearest tenth.
 - b. Find the measure of the angle between the resultant vector and \vec{a} to the nearest tenth.
- 6. Given: $\overrightarrow{w} = -2\overrightarrow{i} 6\overrightarrow{j}$
 - a. Write the vector in components form.
 - b. Find the unit vector in the direction of \overrightarrow{w} . (No decimals in your answer!)