- 1. Write the vector with initial point (-4, 3) and terminal point (-1, -7) in ...
 - a. component form

b. sum of unit vectors form

2. In what quadrant does the vector above lie when it is in standard position?

3. Given $\overrightarrow{v} = \langle 3, -5 \rangle$ and $\overrightarrow{w} = \langle -2, 6 \rangle$, find the following:

$$a. \vec{v} + \vec{w} = \langle \rangle, \rangle$$

b.
$$\vec{w} - \vec{v} = \{ -5, 11 \}$$

c.
$$-2\vec{v} + \frac{1}{2}\vec{w} = \langle -6, 10 \rangle + \langle -1, 3 \rangle = \langle -7, 13 \rangle$$

4. Given $\vec{v} = \langle -3, \sqrt{5} \rangle$, find the following, to the nearest tenth: (3 points each)

a. the magnitude of
$$\vec{v}$$
: $|\vec{v}| = \frac{1}{2\sqrt{7}}$

$$\|\vec{v}\| = \frac{3.7}{}$$

b. the direction of
$$\vec{v}$$
:

b. Find the magnitude of the resultant vector to the nearest tenth.

b. Find the measure of the angle between the resultant vector and $\,a\,$ to the nearest tenth.

6. Given:
$$\vec{w} = -2\vec{i} - 6\vec{j}$$

a. Write the vector in components form. $\left\langle -2 - 6 \right\rangle$

b. Find the unit vector in the direction of w. (No decimals in your answer!)

$$\sqrt{\frac{2}{2\pi i_0}}, \frac{1}{2\pi i_0} = \left(-\frac{\pi_0}{1_0}, -\frac{3\pi_0}{1_0}\right)$$