Solving Systems of Equations Using Inverse Matrices

Step 1: Use matrix multiplication to multiply the matrices in the equation below.

$$\begin{bmatrix} 5 & -4 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$$

$$5 \times + ^{-}4 \times = 8$$

X + 2y = 6

Step 2:

Working backward from step 1, we can write a system of equations as a matrix equation.

Standard
form!
$$\begin{cases}
2x - y = -10 \\
-3x + 4y = 5
\end{cases}$$

$$\begin{bmatrix}
2 - 1 \\
-3 + 4
\end{bmatrix} \cdot \begin{bmatrix}
x \\
y
\end{bmatrix} = \begin{bmatrix}
-10 \\
5
\end{bmatrix}$$

Step 3: Now we can solve the matrix equation using an inverse matrix!

Multiply both sides of the equation by the inverse of the 2x2 matrix:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} -10 \\ 5 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} -35 \\ -20 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -7 \\ -4 \end{bmatrix}$$
so ... $x = -7$ and $y = -4$!

Here are some for you to try ...

Example 1: Solve the system of equations using an inverse matrix.

an inverse matrix.

Standard form
$$\begin{cases} 2x + 5y = 19 \\ 3x + 2y = 1 \end{cases}$$

2) matrix equation
$$\begin{bmatrix} 2 & 5 \\ 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 19 \\ 1 \end{bmatrix}$$

3)
$$2 \times 2$$
 inverse $\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{-11} \begin{bmatrix} 2 & -5 \\ -3 & 2 \end{bmatrix} \cdot \begin{bmatrix} 19 \\ 1 \end{bmatrix}$

4) Multiply matrices
$$\begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{11} \begin{bmatrix} 3 & 3 \\ -5 & 5 \end{bmatrix}$$
 $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$

Example 2: Solve the system of equations using an inverse matrix.

$$5x + 7y = 9$$

$$\frac{3}{1}\left(y = -\frac{2}{3}x + 1\right) \rightarrow 3y = -2x + 3$$

$$2x + 3y = 3$$

$$5x + 7y = 9$$

$$2x + 3y = 3$$

$$\begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 9 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 5 & -14 \\ 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 3 & -2 \end{bmatrix} \cdot \begin{bmatrix} 9 \\$$