\qquad

First, solve the following equations by hand.

1. $4 \sin x=2$
2. $3 \csc ^{2} x=4$
3. $\sin ^{2} x \cos x=4 \cos x$

Next, convert your exact answers to decimals, using a calculator.
1.
2.
3.

Finally, use your graphing calculator to check your answers.
(Note: You will have to enter $y_{1}=3 \csc ^{2} x$ as $y_{1}=2(\csc (x))^{2}$ on the calculator!)

Steps:

1. Put your calculator in RADIAN mode!
2. Enter the left side of the equation as y_{1} and the right side of the equation as y_{2}.
3. To solve on the interval $[0,2 \pi)$, set the window of your graph to include $x \min =0$ and $x \max =2 \pi$.

Adjust the y-values to be able to see the graphs and where they intersect.
4. Graph the two functions, and see where they intersect.
5. Use the intersect feature on the calculator to determine the solutions.

Tomorrow, we will be solving trig equations with multiple angles algebraically. This means we will have a trig equation that cycles more than once on the interval $[0,2 \pi)$. As a result, we will find many more solutions to an equation.

Solve this equation using your graphing calculator. You should find 6 solutions from $[0,2 \pi)$.

$$
\sec (3 x)=\sqrt{2}
$$

