## UNIT VECTORS

1

What is a UNIT VECTOR?

- A unit vector is a vector that is 1 unit long!

There are two standard unit vectors:
$\cdot \vec{\imath}$ is a unit vector $\ldots \vec{\imath}=\langle 1,0\rangle$.
$\cdot \vec{\jmath}$ is a unit vector $\ldots \vec{J}=\langle 0,1\rangle$.


## a Vector in two forms ...

A vector in component form ... $\langle 8,26\rangle$
... can also be written as ...
... the sum of unit vectors $\ldots 8 \vec{i}+26 \vec{j}$

3

Example 1 ... initial point: $(-1,5)$ terminal point: (-2, -3)
a) Find component form.
$\quad\langle-2-(-1),-3-5\rangle=$
b) Write as a sum of unit vectors.

$$
\langle-2-(-1),-3-5\rangle=\langle-1,-8\rangle
$$


c) Find the magnitude.

$$
\sqrt{1+64}=\sqrt{65}=8.06
$$

d) Find the direction. Use $\left[0^{\circ}, 360^{\circ}\right)$.

$$
\begin{aligned}
\theta^{\prime}=\tan ^{-1}\left(\frac{-8}{-1}\right)= & \tan ^{-1} 8=82.87^{\circ} \\
& \theta=180^{\circ}+82.87^{\circ}=262.87^{\circ}
\end{aligned}
$$

## Example 2 ... Vector Operations

- Given $\vec{v}=3 \vec{\imath}-\vec{\jmath}$ and $\vec{w}=-2 \vec{\imath}+3 \vec{\jmath}$.
- Find: $\vec{v}=\langle 3,-1\rangle \quad \vec{w}=\langle-2,3\rangle$
- a) $\begin{aligned} 4 \vec{v}+2 \vec{w} & =4\langle 3,-1\rangle+2\langle-2,3\rangle \\ & =\langle 12,-4\rangle+\langle-4,6\rangle=\langle 8,2\rangle \text { or } 8 \vec{i}+2 \vec{j}\end{aligned}$
-b) $\vec{v}-3 \vec{w}=\langle 3,-1\rangle-3\langle-2,3\rangle$

$$
=\langle 3,-1\rangle+\langle 6,-9\rangle=\langle 9,-10\rangle \text { or } 9 \vec{i}-10 \vec{j}
$$

- C) $\frac{1}{2} \vec{v}+\frac{1}{2} \vec{w}=\frac{1}{2}\langle 3,-1\rangle+\frac{1}{2}\langle-2,3\rangle$

$$
=\left\langle\frac{3}{2},-\frac{1}{2}\right\rangle+\left\langle-\frac{2}{2}, \frac{3}{2}\right\rangle=\left\langle\frac{1}{2}, \frac{2}{2}\right\rangle=\left\langle\frac{1}{2}, 1\right\rangle=\frac{1}{2} \vec{i}+\vec{j}
$$

Demo to help explain the new formula you are about to see.

- consider the vector $\langle 5,0\rangle$
- it has magnitude 5
- a unit vector in the same direction would have magnitude 1
$\langle 5,0\rangle=\frac{1}{\langle }\langle 5,0\rangle=\langle 1,0\rangle \quad$ • that would be vector $\langle 1,0\rangle$ 5

a unit vector in the direction of $\vec{v} \ldots$
A unit vector, $\vec{u}$, in the direction of $\vec{v} \ldots$
$\ldots$ is given by: $\quad \vec{u}=\frac{\vec{v}}{\|\vec{v}\|} \leftarrow$ original vector

Example 3 ... Find a unit vector in the direction of each given vector.

$$
\begin{aligned}
& \text { a) } \vec{v}=\langle 3,-4\rangle \\
& \|\vec{v}\|=\sqrt{9+16}=\sqrt{25}=5 \\
& \vec{u}=\frac{\langle 3,-4\rangle}{5} \\
& \vec{u}=\frac{1}{5}\langle 3,-4\rangle \\
& \vec{u}=\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle \\
& \text { b) }-6 \vec{\imath}+4 \vec{\jmath} \\
& \|\vec{v}\|=\sqrt{36+16}=\sqrt{52}=2 \sqrt{13} \\
& \vec{u}=\frac{\langle-6,4\rangle}{2 \sqrt{13}}=\frac{1}{2 \sqrt{13}}\langle-6,4\rangle \\
& =\left\langle-\frac{6}{2 \sqrt{13}}, \frac{4}{2 \sqrt{13}}\right\rangle=\left\langle-\frac{3}{\sqrt{13}}, \frac{2}{\sqrt{13}}\right\rangle \\
& \vec{u}=\left\langle-\frac{3 \sqrt{13}}{13}, \frac{2 \sqrt{13}}{13}\right\rangle \\
& \text { or }-\frac{3 \sqrt{13}}{13} \vec{i}+\frac{2 \sqrt{13}}{13} \vec{j}
\end{aligned}
$$

8

