

Example 2 ... Vector Operations
• Given
$$\vec{v} = 3\vec{i} - \vec{j}$$
 and $\vec{w} = -2\vec{i} + 3\vec{j}$.
• Find: $\vec{v} = \langle 3, -1 \rangle$ $\vec{w} = \langle -2, 3 \rangle$
• a) $4\vec{v} + 2\vec{w} = 4\langle 3, -1 \rangle + 2\langle -2, 3 \rangle$
 $= \langle 12, -4 \rangle + \langle -4, 6 \rangle = \langle 8, 2 \rangle$ or $8\vec{i} + 2\vec{j}$
• b) $\vec{v} - 3\vec{w} = \langle 3, -1 \rangle - 3\langle -2, 3 \rangle$
 $= \langle 3, -1 \rangle + \langle 6, -9 \rangle = \langle 9, -10 \rangle$ or $9\vec{i} - 10\vec{j}$
• c) $\frac{1}{2}\vec{v} + \frac{1}{2}\vec{w} = \frac{1}{2}\langle 3, -1 \rangle + \frac{1}{2}\langle -2, 3 \rangle$
 $= \langle \frac{3}{2}, -\frac{1}{2} \rangle + \langle -\frac{2}{2}, \frac{3}{2} \rangle = \langle \frac{1}{2}, \frac{2}{2} \rangle = \langle \frac{1}{2}, 1 \rangle = \frac{1}{2}\vec{i} + \vec{j}$

Demo to help explain the new formula you are about to see. • consider the vector $\langle 5, 0 \rangle$ • it has magnitude 5 • a *unit vector* in the same direction would have magnitude 1 • that would be vector $\langle 1, 0 \rangle$

Example 3 ... Find a unit vector in the direction of each given vector.
a)
$$\vec{v} = \langle 3, -4 \rangle$$

 $\|\vec{v}\| = \sqrt{9+16} = \sqrt{25} = 5$
 $\vec{u} = \frac{\langle 3, -4 \rangle}{5}$
 $\vec{u} = \frac{\langle 3, -4 \rangle}{5}$
 $\vec{u} = \left| \frac{\langle 3, -4 \rangle}{5} \right|$
 $\vec{u} = \left| \frac{\langle 3, -4 \rangle}{5} \right|$
 $\vec{u} = \left| \frac{\langle -6, 4 \rangle}{2\sqrt{13}} = \frac{1}{2\sqrt{13}} \langle -6, 4 \rangle$
 $= \left| \left| \frac{\langle -6, 4 \rangle}{2\sqrt{13}} = \frac{1}{2\sqrt{13}} \langle -6, 4 \rangle\right|$
 $= \left| \left| \frac{\langle -6, 4 \rangle}{2\sqrt{13}} = \frac{1}{2\sqrt{13}} \langle -6, 4 \rangle\right|$
 $\vec{u} = \left| \frac{\langle -6, 4 \rangle}{2\sqrt{13}} = \frac{1}{2\sqrt{13}} \langle -6, 4 \rangle\right|$
 $\vec{u} = \left| \frac{\langle -3\sqrt{13}, \frac{2}{\sqrt{13}} \rangle}{\sqrt{13}} \right|$
 $\vec{u} = \left| \frac{\langle -3\sqrt{13}, \frac{2}{\sqrt{13}} \rangle}{13} \right|$
 $\vec{u} = \left| \frac{\langle -3\sqrt{13}, \frac{2}{\sqrt{13}} \rangle}{13} \right|$