VECTORS VOCABULARY, SYMBOLS & FORMULAS

Today is just about creating a vocabulary and formula sheet to reference throughout the unit.
Do NOT expect to understand anything today!

•We will learn about each item one day at a time in more detail with examples.

VECTOR -

•a directed line segment that has both magnitude and direction

• represented by \boldsymbol{v} or \boldsymbol{v}

TAIL / HEAD -

the tail is the initial point of the vector
the head is the terminal point (arrow-tip) of the vector

 $\leftarrow head$ (x_2, y_2)

 \leftarrow tail (x₁, y₁)

COMPONENT FORM -

E St.

symbolic way to represent a vector

•formula:
$$\vec{v} = \langle x_2 - x_1, y_2 - y_1 \rangle$$

STANDARD FORM -

• the result of finding component form, which puts the initial point at the origin

represented by
$$\vec{v} = \langle x, y \rangle$$

MAGNITUDE -

the size/length of a vector

• represented by
$$//v//$$
 or $\|\vec{v}\|$

•formula:
$$\left\| \vec{v} \right\| = \sqrt{x^2 + y^2}$$

6.00

DIRECTION -

•the angle a vector makes with the x-axis

• represented by θ

•formula:
$$\theta' = \tan^{-1}\left(\frac{y}{x}\right)$$

RESULTANT VECTOR -

•the result of adding or subtracting two or more vectors

represented by: $\vec{r} = \vec{a} + \vec{b}$

UNIT VECTOR -

• a vector that is one unit long • represented by \vec{i} and \vec{j} • formula: $\vec{u} = \frac{\vec{v}}{\|\vec{v}\|}$

DOT PRODUCT -

a scalar quantity associated with two vectors

represented by $v \cdot w$

•formula:
$$v \cdot w = v_1 w_1 + v_2 w_2$$

ORTHOGONAL VECTORS -

•vectors that form a 90° angle and have a dot product = 0

ANGLE BETWEEN TWO VECTORS -

•formula:
$$\theta = \cos^{-1} \left(\begin{array}{c} \overrightarrow{v} \cdot \overrightarrow{w} \\ \overrightarrow{v} \cdot \overrightarrow{w} \\ \hline \| \overrightarrow{v} \| \cdot \| \overrightarrow{w} \| \end{array} \right)$$

and an

Source States and States

6.34

VECTOR IN TRIG FORM -

•used to make applications easy!

• represented by
$$\vec{v} = \|\vec{v}\| \langle \cos\theta, \sin\theta \rangle$$

VECTOR APPLICATIONS -

$$\vec{r} = \vec{a} + \vec{b}$$

• $\|\vec{r}\|$ = resultant speed or distance