VECTORS

vOCABULARY，SYMBOLS \＆FORMULAS

${ }^{\bullet}$ Today is just about creating a vocabulary and formula sheet to reference throughout the unit.
${ }^{\bullet}$ Do NOT expect to understand anything today!
${ }^{\circ}$ We will learn about each item one day at a time in more detail with examples.

VECTOR-

- a directed line segment that has both magnitude and direction
${ }^{\text {}}$ represented by \boldsymbol{v} or \vec{v}

TAIL / HEAD -

the tail is the initial point of the vector
the head is the terminal point (arrow-tip) of the vector

COMPONENT FORM -

${ }^{\circ}$ symbolic way to represent a vector
formula: $\vec{v}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}\right\rangle$

STANDARD FORM -

${ }^{\circ}$ the result of finding component form, which puts the initial point at the origin

- represented by $\vec{v}=\langle x, y\rangle$

MACNITUDE-

${ }^{\circ}$ the size/length of a vector
${ }^{\text {© represented by }\|v\| \text { or }\|\vec{v}\|}$
formula: $\|\vec{v}\|=\sqrt{x^{2}+y^{2}}$

DIRECTION -

the angle a vector makes with the x -axis
represented by θ
formula: $\theta^{\prime}=\tan ^{-1}\left(\frac{y}{x}\right)$

RESULTANT VECTOR -

the result of adding or subtracting two or more vectors
${ }^{\text {}}$ represented by: $\vec{r}=\vec{a}+\vec{b}$

UNIT VECTOR -

${ }^{\circ}$ a vector that is one unit long
${ }^{\circ}$ represented by \vec{i} and \vec{j}
${ }^{\circ}$ formula: $\vec{u}=\frac{v}{\|\vec{v}\|}$

DOT PRODUCT -

${ }^{\circ}$ a scalar quantity associated with two vectors
${ }^{\bullet}$ represented by $\vec{v} \bullet \vec{w}$
formula: $v \bullet w=v_{1} w_{1}+v_{2} w_{2}$

ORTHOGONAL VECTORS -

vectors that form a 90° angle and have a dot product $=0$

angle between two vectors -

- formula: $\quad \theta=\cos ^{-1}\left(\frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\| \cdot\|\vec{w}\|}\right)$

VECTOR IN TRIG FORM -

used to make applications easy!
represented by $\vec{v}=\|\vec{v}\|\langle\cos \theta, \sin \theta\rangle$

VECTOR APPLICATIONS -

- $\vec{r}=\vec{a}+\vec{b}$

$$
\|\vec{r}\|=\text { resultant speed or distance }
$$

